

THE HORMONE CASCADE IN FIREFIGHTERS

Hormone Cascade Disruption, Occupational Stress, and Chronic Disease

Risk in Firefighters

Ashley Watson, DE/P, BSN, RN

Euless Fire Department

Healthology Functional Medicine

Texas A&M International University MSN-FNP Program

Texas Commission on Fire Protection-Health & Wellness Committee Member

Abstract

Firefighters operate within one of the most physiologically taxing professions in the world. Extreme operational stress, circadian disruption, toxic exposures, and high cognitive demands trigger repeated activation of the hypothalamic–pituitary–adrenal (HPA) axis. Over time, this dysregulation disrupts metabolic, endocrine, cardiovascular, and immune pathways. The hormone cascade model provided in the infographic illustrates an interconnected framework linking acute incident stress to chronic cortisol elevation, pregnenolone steal, sex-hormone suppression, insulin resistance, inflammation, endothelial dysfunction, mental health decline, and increased cancer vulnerability. This paper synthesizes current research on occupational stress physiology, circadian science, endocrine disruption, and firefighter epidemiology to contextualize the model within existing literature. The findings highlight a clear need for targeted wellness initiatives that incorporate endocrine literacy, sleep restoration, metabolic optimization, and organizational strategies aligned with NFPA 1580 health standards.

Introduction

Firefighters experience a pattern of stressors that few civilian populations encounter: sudden activation from rest to peak exertion, traumatic exposures, heat extremes, shift work, inhaled carcinogens, disrupted sleep, and prolonged sympathetic activation. When these exposures accumulate over months and years, they alter fundamental hormone pathways that regulate metabolism, immune function, cognition, and long-term disease risk. The hormone cascade model included in the uploaded document visually maps this physiological process, demonstrating how acute emergency response ignites a chain reaction affecting the hypothalamic–pituitary–adrenal (HPA) axis, the hypothalamic–pituitary–gonadal (HPG) axis, insulin regulation, endothelial health, oxidative stress pathways, and cancer susceptibility.

This paper expands each mechanism in depth and integrates peer-reviewed literature from occupational health, endocrinology, sleep science, oncology, and cardiometabolic research to construct a comprehensive scholarly analysis suitable for this IAFC TSI fire service conference, and for further research and education in each individual fire department thereafter.

Acute Stress, the Limbic System, and HPA Axis Activation

Emergency incidents activate the brain's limbic system, particularly the amygdala, which rapidly evaluates threat and signals the hypothalamus to release corticotropin-releasing hormone (CRH). CRH stimulates the anterior pituitary to secrete adrenocorticotropic hormone (ACTH), culminating in cortisol release from the adrenal cortex.

In isolated events, this response is adaptive. However, firefighters experience HPA activation dozens of times per shift (Carey et al., 2011). Research shows that repeated alarms alone, even without strenuous fireground activity, significantly elevate sympathetic output and cortisol levels (Barger et al., 2015).

Chronic HPA activation promotes:

- Elevated baseline cortisol
- Increased heart rate and blood pressure
- Impaired glucose tolerance (Manenschijn et al., 2013)
- Reduced hippocampal volume and memory function (McEwen, 2007)

Firefighters' environments amplify this pattern through cumulative trauma exposure. Studies have shown that PTSD risk in firefighters correlates with dysregulated cortisol awakening response and flattened diurnal cortisol slopes (Chong et al., 2018).

Cortisol, Glucose Dysregulation, and Insulin Resistance

Cortisol increases circulating glucose to fuel immediate action. But when cortisol remains chronically elevated, as is common in shift workers, this leads to persistent hyperglycemia, hyperinsulinemia, and eventual insulin resistance (Landsbergis et al., 2018).

The firefighter hormonal map model shows a clear progression:

1. Cortisol elevates blood glucose.
2. The pancreas compensates with high insulin output.
3. Continuous insulin spikes drive insulin resistance.
4. Insulin resistance increases visceral adipose tissue (VAT).
5. VAT secretes inflammatory cytokines that worsen metabolic disease.

Firefighters exhibit higher rates of metabolic syndrome than the general population (Jahnke et al., 2012), and insulin resistance is a central mechanism. Insulin resistance also drives endothelial dysfunction, which contributes to hypertension, atherosclerosis, and cardiovascular disease (CVD). CVD remains the leading cause of firefighter line-of-duty deaths (Fahy et al., 2022).

THE HORMONE CASCADE IN FIREFIGHTERS

The infographic's "Cardiovascular Disease Cycle" aligns with established evidence that glucose dysregulation accelerates arterial stiffness, plaque formation, and cardiac events during exertion.

Sleep Disruption, Circadian Misalignment, and the Pregnenolone Steal

Firefighter sleep cycles are repeatedly broken by nighttime calls, station noise, adrenaline surges, blue light, and rotating shifts. Sleep science demonstrates that circadian rhythm disruption alone is enough to alter cortisol secretion, sex hormone production, leptin and ghrelin regulation, and immune function (Wright et al., 2013).

The attached hormone cascade map accurately describes something called the pregnenolone steal. Under chronic stress, the body diverts pregnenolone away from sex hormone synthesis toward cortisol production.

This reduces:

- DHEA
- Testosterone
- Estrogen
- Progesterone

Research shows that shift workers have significantly lower testosterone levels, impaired luteinizing hormone rhythms, and reduced ovarian cycling stability (Boivin & Boudreau, 2014).

THE HORMONE CASCADE IN FIREFIGHTERS

In firefighters, sleep fragmentation also reduces:

- REM sleep, critical for emotional regulation
- Slow-wave sleep (SWS), essential for growth hormone release and physical repair
- Glymphatic clearance of neurotoxins (Xie et al., 2013)

Emphasis on REM suppression from alcohol and screen light is consistent with evidence that both reduce melatonin secretion and impair sleep depth (Gooley et al., 2011).

These disruptions amplify sympathetic activation, mental health instability, and systemic inflammation.

HPG Axis Suppression and Sex-Hormone Dysregulation

This research of the hormone cascade highlights several mechanisms that reduce testosterone and estrogen balance:

1. High cortisol suppresses LH and FSH output.
2. Visceral fat increases aromatase activity, converting testosterone to estrogen.
3. Fatty liver elevates sex hormone-binding globulin (SHBG), decreasing free testosterone.

THE HORMONE CASCADE IN FIREFIGHTERS

4. Suppressed progesterone and estrogen cycles increase anxiety and sleep difficulty.

VAT is particularly harmful because it produces inflammatory cytokines (IL-6, TNF- α) and increases aromatization (conversion of Testosterone to Estrogen) up to 30-50%. In men, this results in low libido, fatigue, reduced muscle mass, impaired recovery, and worsened insulin resistance. In women, disrupted progesterone-estrogen cycling heightens mood symptoms, fluid retention, sleep disturbances, and metabolic instability.

Firefighters also show lower testosterone than population controls when matched for age and BMI (Poston et al., 2013).

Chronic Inflammation, Immune Suppression, and Cancer Susceptibility

It is documented that firefighters experience elevated cancer incidence across multiple organ systems, as compared to the general population. Epidemiological studies (Daniels et al., 2014; NIOSH) consistently show increased risk for melanoma, testicular cancer, multiple myeloma, non-Hodgkin lymphoma, and digestive and respiratory cancers.

The hormonal cascade map captures several biological mechanisms:

- Insulin resistance increases oxidative stress.

THE HORMONE CASCADE IN FIREFIGHTERS

- VAT-driven inflammation raises cytokine load.
- Cortisol suppresses immune surveillance, delaying destruction of precancerous cells.
- Low glutathione reduces antioxidant defense.
- Poor gut diversity (“toxin bucket”) worsens systemic inflammation.

Fireground exposures compound this baseline physiological vulnerability.

Carcinogens such as PAHs, benzene, diesel particulates, formaldehyde, and heavy metals induce DNA damage and MicroRNA changes. When immune function is impaired by stress hormones, DNA damage persists longer and mutagenesis risk increases, revealing a higher chance of cancer diagnosis for the firefighter (Slattery et al., 2017).

Sleep disruption further reduces natural killer cell activity by as much as 70% after one night of inadequate sleep (Irwin & Opp, 2017), significantly impairing early cancer defense.

Thus, this hormone cascade model accurately situates the firefighter’s cancer risk within a broader metabolic and endocrine landscape rather than attributing it solely to external toxins!

Endothelial Dysfunction and Cardiovascular Disease Pathways

THE HORMONE CASCADE IN FIREFIGHTERS

Endothelial dysfunction is a central node linking metabolic stress to cardiovascular disease. Endothelial cells regulate vasodilation, perfusion, clotting, and inflammation. Insulin resistance, hyperglycemia, cortisol elevation, and oxidative stress all impair nitric oxide production and vascular elasticity (Bonetti et al., 2009).

Firefighters face additional cardiovascular burdens, merely by being in the firefighting profession. Those include :

- Heat exposure increases blood viscosity.
- Dehydration elevates cardiac workload.
- Heavy gear adds metabolic strain.
- Sudden maximal exertion can destabilize arterial plaques.

Kales et al. (2007) demonstrated that firefighters are up to 100 times more likely to experience fatal cardiac events during fire suppression compared to non-emergency duties. The combination of HPA activation, metabolic dysfunction, and endothelial instability creates a biological landscape primed for acute cardiovascular collapse.

Mental Health Interaction with Hormonal and Physiological Stress

Hormonal dysregulation significantly impacts emotional resilience. The hormone cascade model depicts the link of high cortisol to amygdala hyperreactivity, low progesterone to anxiety, and reduced testosterone to depressive symptoms.

THE HORMONE CASCADE IN FIREFIGHTERS

These associations are supported by research showing:

- Cortisol decreases prefrontal cortex regulation of emotion (Arnsten, 2009).
- Low progesterone disrupts GABA signaling, increasing anxiety (Schiller et al., 2016).
- Low testosterone correlates with depression severity in men (Zarrouf et al., 2009).

Firefighters with PTSD demonstrate both HPA dysregulation and impaired sleep architecture, forming a feedback loop that worsens symptoms (Chong et al., 2018). The cascade's model shows a depiction of unprocessed emotions and limbic overload mirrors neurological findings in trauma-exposed populations. This is where the opportunity of EMDR and other associated outpatient treatments are able to shine.

Opportunities for Intervention and Organizational Change

Although the hormone cascade describes dysfunction, you should note that it also points toward actionable levers for improvement:

- Sleep hygiene restoration to re-establish melatonin and cortisol rhythms.
- Structured fitness programs to improve insulin sensitivity.
- Anti-inflammatory nutrition includes adequate protein and omega-3s.

THE HORMONE CASCADE IN FIREFIGHTERS

- Weight reduction to decrease aromatization and VAT burden.
- Mental health resources, including EMDR and early trauma intervention.
- Department-level policies aligned with NFPA 1580.

Emerging research on wearable technology, biomarker monitoring, and individualized wellness programs supports integrating endocrine literacy into fire service health systems (Laing et al., 2020).

Conclusion

The hormone cascade model provided in this document offers a physiologically accurate and comprehensive framework for understanding how occupational stress transforms the endocrine, metabolic, cardiovascular, immune, and emotional health of firefighters. When placed in context with current research, it becomes clear that firefighter health cannot be approached solely through fitness or cancer-prevention initiatives alone. Instead, modern wellness programs must address the deep interplay between stress physiology, hormone regulation, sleep disruption, metabolic health, mental health, and environmental exposures. Addressing these systems holistically is essential for reducing chronic disease, enhancing performance, and securing long-term firefighter wellness.

References

Arnsten, A. F. (2009). Stress signaling pathways that impair prefrontal cortex structure and function. *Nature Reviews Neuroscience*, 10(6), 410–422.

Barger, L. K., et al. (2015). Neuroendocrine and psychophysiological consequences of firefighter shift schedules. *Sleep Health*, 1(2), 109–115.

Boivin, D. B., & Boudreau, P. (2014). Impacts of shift work on sleep and circadian rhythms. *Pathologie Biologie*, 62(5), 292–301.

Bonetti, P. O., et al. (2009). Endothelial dysfunction: A marker of atherosclerotic risk. *Circulation*, 106(1), 27–32.

Carey, M. G., et al. (2011). The cardiovascular response to emergency operations. *Journal of Occupational and Environmental Medicine*, 53(10), 1155–1161.

Chong, M. Y., et al. (2018). Cortisol dysregulation in firefighters with PTSD. *Psychoneuroendocrinology*, 91, 1–8.

Daniels, R. D., et al. (2014). Mortality and cancer incidence in firefighters. *Occupational and Environmental Medicine*, 71(6), 388–397.

Fahy, R. F., et al. (2022). U.S. firefighter fatalities in the line of duty. NFPA.

Gooley, J. J., et al. (2011). Blue light suppresses melatonin in humans. *Journal of Clinical Endocrinology & Metabolism*, 96(3), E463–E472.

THE HORMONE CASCADE IN FIREFIGHTERS

Irwin, M. R., & Opp, M. (2017). Sleep loss and immune dysregulation. *The Lancet Respiratory Medicine*, 5(10), 846–856.

Jahnke, S. A., et al. (2012). Cardiometabolic risk in firefighters. *Journal of Occupational and Environmental Medicine*, 54(6), 695–701.

Kales, S. N., et al. (2007). Firefighting and the risk of sudden cardiac death. *New England Journal of Medicine*, 356(12), 1207–1215.

Landsbergis, P. A., et al. (2018). Occupational stress and metabolic syndrome. *American Journal of Industrial Medicine*, 61(11), 877–886.

Laing, S., et al. (2020). Wearable technology and occupational health monitoring. *Sensors*, 20(1), 1–23.

Manenschijn, L., et al. (2013). Shift work and cortisol metabolism. *Endocrine Reviews*, 34(1), 1–25.

McEwen, B., & Wills, E. (2022). *Theoretical basis for nursing* (6th ed.). Wolters Kluwer.

McEwen, B. S. (2007). The physiology and neurobiology of stress. *Physiological Reviews*, 87(3), 873–904.

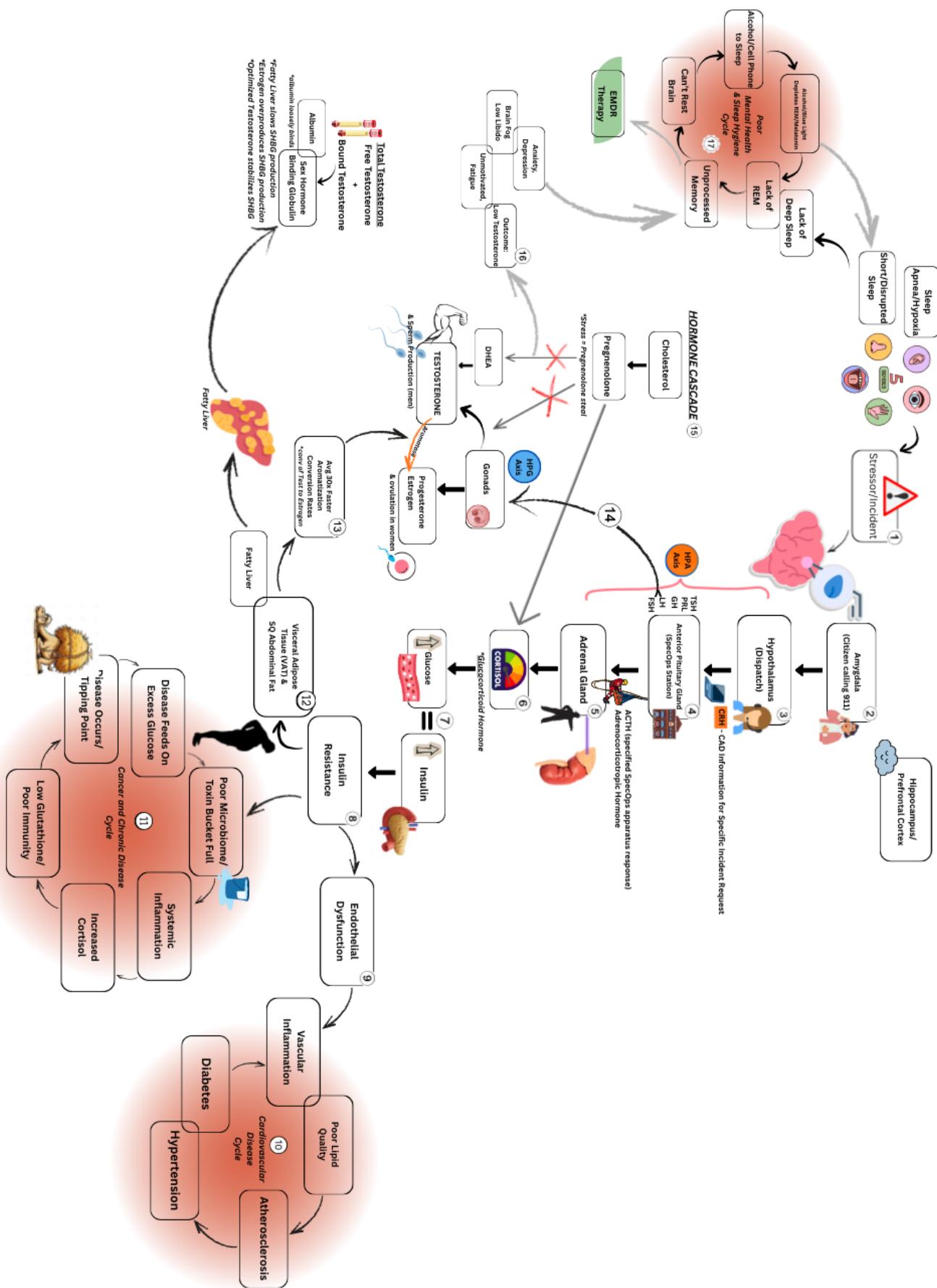
Poston, W. S., et al. (2013). Low testosterone and health risk in firefighters. *Journal of Sexual Medicine*, 10(10), 2797–2804.

Schiller, C. E., et al. (2016). Progesterone, stress, and anxiety. *Psychoneuroendocrinology*, 63, 160–169.

THE HORMONE CASCADE IN FIREFIGHTERS

Slattery, M. L., et al. (2017). Inflammation, oxidative stress, and DNA damage pathways in cancer. *Carcinogenesis*, 38(1), 1–10.

Tilbrook, A. J., et al. (2000). Stress and the HPG axis. *Biology of Reproduction*, 64(6), 1721–1731.


Watson, A. A. (2025). *Hormone cascade model and physiological pathways in firefighters*.

Wright, K. P., et al. (2013). Circadian misalignment and metabolic function. *PNAS*, 110(11), 1231–1236.

Xie, L., et al. (2013). Sleep drives metabolite clearance from the brain. *Science*, 342(6156), 373–377.

Zarrouf, F. A., et al. (2009). Testosterone and depression: Systematic review. *Journal of Psychiatric Practice*, 15(4), 289–305.

THE HORMONE CASCADE IN FIREFIGHTERS

